Preprint
Article

This version is not peer-reviewed.

Modeling that Predicts Elementary Particles and Explains Data about Dark Matter, Early Galaxies, and the Cosmos

Submitted:

20 October 2020

Posted:

21 October 2020

You are already at the latest version

Abstract
We try to solve three decades-old physics challenges. List all elementary particles. Describe dark matter. Describe mechanisms that govern the rate of expansion of the universe. We propose new modeling. The modeling uses extensions to harmonic oscillator mathematics. The modeling points to all known elementary particles. The modeling suggests new particles. Based on those results, we do the following. We explain observed ratios of dark matter amounts to ordinary matter amounts. We suggest details about galaxy formation. We suggest details about inflation. We suggest aspects regarding changes in the rate of expansion of the universe. We interrelate the masses of some elementary particles. We interrelate the strengths of electromagnetism and gravity. Our work seems to offer new insight regarding applications of harmonic oscillator mathematics. Our work seems to offer new insight regarding three branches of physics. The branches are elementary particles, astrophysics, and cosmology.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated