Preprint
Article

This version is not peer-reviewed.

Parisian Time of Reflected Brownian Motion With Drift on Rays

A peer-reviewed article of this preprint also exists.

Submitted:

16 October 2020

Posted:

19 October 2020

You are already at the latest version

Abstract
In this paper, we study the Parisian time of a reflected Brownian motion with drift on a finite collection of rays. We derive the Laplace transform of the Parisian time using a recursive method, and provide an exact simulation algorithm to sample from the distribution of the Parisian time. The paper is motivated by the settlement delay in the real-time gross settlement (RTGS) system. Both the central bank and the participating banks in the system are concerned about the liquidity risk, and are interested in the first time that the duration of settlement delay exceeds a predefined limit, we reduce this problem to the calculation of the Parisian time. The Parisian time is also crucial in the pricing of Parisian type options; to this end, we will compare our results with the existing literature.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated