Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Monitoring Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) Infestation in Soybean Using Hyperspectral Remote Sensing

Version 1 : Received: 8 October 2020 / Approved: 12 October 2020 / Online: 12 October 2020 (10:57:01 CEST)

How to cite: Barros, P.P.S.; Schutze, I.X.; Iost Filho, F.H.; Takao Yamamoto, P.; Fiorio, P.; Demattê, J.A.M. Monitoring Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) Infestation in Soybean Using Hyperspectral Remote Sensing. Preprints 2020, 2020100229 (doi: 10.20944/preprints202010.0229.v1). Barros, P.P.S.; Schutze, I.X.; Iost Filho, F.H.; Takao Yamamoto, P.; Fiorio, P.; Demattê, J.A.M. Monitoring Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) Infestation in Soybean Using Hyperspectral Remote Sensing. Preprints 2020, 2020100229 (doi: 10.20944/preprints202010.0229.v1).

Abstract

Although monitoring and observing insect pest populations in the fields is essential in crop management, it is still a laborious and sometimes ineffective process. High infestation levels may diminish the photosynthetic activity of soybean plants, affecting their development and reducing the yield. An imprecise decision making in integrated pest management program may lead to an ineffective control in infested areas or the excessive use of insecticides. In order to reach a more efficient control of arthropods population it is important to evaluate the infestation in time to mitigate its negative effects on the crop and remote sensing is an important tool for monitoring. It was proposed that infested soybean areas could be identified, and the arthropods quantified from non-infested areas in a field by hyperspectral remote sensing. Thus, the goals of this study were to investigate and discriminate the reflectance characteristics of soybean non-infested and infested with Bemisia tabaci using hyperspectral remote sensing data. Therefore, samples of infested and non-infested soybean leaves were collected and transported to the laboratory to obtain the hyperspectral curves. The results obtained allowed to discriminate the different levels of infestation and to separate healthy from whitefly infested soybean leaves based on their reflectance.

Subject Areas

glycine max; sampling; pest management; spectroradiometer

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.