Preprint
Article

This version is not peer-reviewed.

A Note on the Local Stability Theory for Caputo Fractional Planar System

Submitted:

07 October 2020

Posted:

08 October 2020

You are already at the latest version

Abstract
In this manuscript a new approach into analyzing the local stability of equilibrium points of non-linear Caputo fractional planar systems is shown. It is shown that the equilibrium points of such systems can be a stable focus or unstable focus. In addition, it is proposed that previous results regarding the stability of equilibrium points have been incorrect, the results here attempt to correct such results. Lastly, it is proposed that a Caputo fractional planar system cannot undergo a Hopf bifurcation, contrary to previous results prior. Though, it is shown that such systems can undergo a Hopf bifurcation (topologically).
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated