Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

On the Role of the Cathode for the Electro-oxidation of Perfluorooctanoic Acid

Version 1 : Received: 22 July 2020 / Approved: 23 July 2020 / Online: 23 July 2020 (12:36:19 CEST)

A peer-reviewed article of this Preprint also exists.

Garcia-Costa, A.L.; Savall, A.; Zazo, J.A.; Casas, J.A.; Groenen Serrano, K. On the Role of the Cathode for the Electro-Oxidation of Perfluorooctanoic Acid. Catalysts 2020, 10, 902. Garcia-Costa, A.L.; Savall, A.; Zazo, J.A.; Casas, J.A.; Groenen Serrano, K. On the Role of the Cathode for the Electro-Oxidation of Perfluorooctanoic Acid. Catalysts 2020, 10, 902.

Journal reference: Catalysts 2020, 10, 902
DOI: 10.3390/catal10080902

Abstract

Perfluorooctanoic acid (PFOA), C7F15COOH, has been widely employed over the past fifty years, causing an environmental problem due to its dispersion and low biodegradability. Furthermore, the high stability of this molecule, conferred by the high strength of the C-F bond makes it very difficult to remove. In this work, electrochemical techniques are applied for PFOA degradation in view to study the influence of the cathode on defluorination. For this purpose, boron doped diamond (BDD), Pt, Zr and stainless steel have been tested as cathodes working with BDD anode at low electrolyte concentration (3.5 mM) to degrade PFOA at 100 mg/L. Among these cathodic materials, Pt improves the defluorination reaction. The electro-degradation of a PFOA molecule starts by a direct exchange of one electron at the anode and then follows a complex mechanism involving reaction with hydroxyl radicals and adsorbed hydrogen on the cathode. It is assumed that Pt acts as an electrocatalyst, enhancing PFOA defluorination by the reduction reaction of perfluorinated carbonyl intermediates on the cathode. The defluorinated intermediates are then more easily oxidized by HO• radicals. Hence, high mineralization (xTOC: 76.1%) and defluorination degrees (xF-: 58.6%) were reached with Pt working at current density j = 7.9 mA/cm2. This BDD-Pt system reaches a higher efficiency in terms of defluorination for a given electrical charge than previous works reported in literature. Influence of the electrolyte composition and initial pH are also explored.

Subject Areas

perfluorooctanoic acid; emerging contaminant; defluorination; platinum; electro-oxidation

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.