Preprint
Article

This version is not peer-reviewed.

In silico study of SARS-CoV-2 Nucleocapsid Protein-Protein Interactions and Potential Candidates for their Stabilization

A peer-reviewed article of this preprint also exists.

Submitted:

23 July 2020

Posted:

23 July 2020

Read the latest preprint version here

Abstract
The outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19, has caused a global health crisis. Unfortunately, only a few treatments have proved to be effective, and their worldwide distribution remains as a challenge. Due to the urgency of the situation, drug repurposing remains as the fastest way to identify possible therapeutic options. Recent studies have shown that the stabilization of non-native Protein-Protein Interactions (PPIs) of the nucleocapsid protein of MERS coronavirus is a valid strategy to inhibit viral replication, but no study up to date has been done in SARS-CoV-2. In this work, a novel protocol for the discovery of PPIs stabilizers is presented and applied to SARS-CoV-2 N protein with a drug repurposing approach. This enabled us to identify that catechin, a structural motif present in widely distributed natural products, might be a privileged scaffold for this type of stabilization. Since many of the compounds presented in this work are generally considered nutraceuticals and have also been exhaustively studied, even though some of them contain PAINS substructures, could be good candidates for the SARS-CoV-2 nucleocapsid inhibition and be considered for further in vitro testing against COVID-19.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated