Preprint
Article

This version is not peer-reviewed.

JAMPI: Efficient Matrix Multiplication in Spark Using Barrier Execution Mode

Tamas Foldi  *
,
Chris von Csefalvay
,
Nicolas A. Perez
A peer-reviewed article of this preprint also exists.

Submitted:

19 July 2020

Posted:

19 July 2020

You are already at the latest version

Abstract
The new barrier mode in Apache Spark allows embedding distributed deep learning training as a Spark stage to simplify the distributed training workflow. In Spark, a task in a stage doesn’t depend on any other tasks in the same stage, and hence it can be scheduled independently. However, several algorithms require more sophisticated inter-task communications, similar to the MPI paradigm. By combining distributed message passing (using asynchronous network IO), OpenJDK’s new auto-vectorization and Spark’s barrier execution mode, we can add non-map/reduce based algorithms, such as Cannon’s distributed matrix multiplication to Spark. We document an efficient distributed matrix multiplication using Cannon’s algorithm, which improves significantly on the performance of the existing MLlib implementation. Used within a barrier task, the algorithm described herein results in an up to 24% performance increase on a 10,000x10,000 square matrix with a significantly lower memory footprint. Applications of efficient matrix multiplication include, among others, accelerating the training and implementation of deep convolutional neural network based workloads, and thus such efficient algorithms can play a ground-breaking role in faster, more efficient execution of even the most complicated machine learning tasks
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated