Hilal, M.E.; Aboulouard, A.; Akbar, A.R.; Younus, H.A.; Horzum, N.; Verpoort, F. Progress of MOF-Derived Functional Materials Toward Industrialization in Solar Cells and Metal-Air Batteries. Catalysts2020, 10, 897.
Hilal, M.E.; Aboulouard, A.; Akbar, A.R.; Younus, H.A.; Horzum, N.; Verpoort, F. Progress of MOF-Derived Functional Materials Toward Industrialization in Solar Cells and Metal-Air Batteries. Catalysts 2020, 10, 897.
Abstract
The cutting-edge photovoltaic cells are an indispensable part of the ongoing progress of earth-friendly plans for daily life energy consumption. However, the continuous electrical demand that extends to the night time requires a prior deployment of efficient real-time storage systems. In this regard, metal-air batteries have presented themselves as the most suitable candidates for solar energy storage, combining extra lightweight with higher power outputs and promises of longer life cycles. Scientific research over non-precious functional catalysts has always been the milestone and still contributing significantly to exploring new advanced materials and moderating the cost of both complementary technologies. Metal-organic frameworks (MOFs) derived functional materials have found their way to the application as storage and conversion materials, owing to their structural variety, porous advantages, as well as the tunability and high reactivity. In this review, we provide a detailed overview of the latest progress of MOF-based materials operating in metal-air batteries and photovoltaic cells.
Keywords
metal organic frameworks; catalysts; metal-air battery; solar cells; energy storage; energy
Subject
Chemistry and Materials Science, Electrochemistry
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.