Preprint
Review

This version is not peer-reviewed.

Locomotor Activities as a Way of Inducing Neuroplasticity: Insights and Perspectives on Conventional and Eccentric Exercise Approaches

A peer-reviewed article of this preprint also exists.

Submitted:

03 August 2020

Posted:

04 August 2020

You are already at the latest version

Abstract
Corticospinal excitability and particularly the balance between cortical inhibitory and excitatory processes (assessed in a muscle using transcranial magnetic stimulation), are affected by neurodegenerative pathologies or following a stroke. Non-fatiguing conventional locomotor exercise, such as cycling or walking, decreases intracortical inhibition and/or increases intracortical facilitation. These modifications notably seem to be a consequence of neurotrophic factors (e.g., brain-derived neurotrophic factors) resulting from hemodynamic solicitation. Furthermore, it can be inferred from non-invasive brain and peripheral stimulation studies that repeated activation of neural networks can endogenously shape neuroplasticity. Such mechanisms could also occur following eccentric exercises (i.e., active lengthening of the muscle), during which motor-related cortical potential is of greater magnitude and lasts longer (assessed by electroencephalography) than during concentric exercises (i.e., muscle shortening). As single-joint eccentric exercise decreased short- and long-interval intracortical inhibition and increased intracortical facilitation (assessed by paired-pulse transcranial magnetic stimulation immediately after), locomotor eccentric exercise may be even more potent by adding hemodynamic-related neuroplastic processes to endogenous processes. Besides, eccentric exercise is especially useful to develop relatively high force levels at low cardiorespiratory and perceived intensity, which can be a training goal in addition to inducing neuroplastic changes. Further studies are required to understand how neuroplasticity is 1) acutely influenced by locomotor exercise characteristics (e.g., intensity, duration), 2) modulated by an exercise-based rehabilitation program, 3) related to functional cognitive and motor outcomes relevant to pathological population.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated