Preprint
Article

Diabetic Retinopathy Diagnostics from Retinal Images based on Deep Convolutional Networks

Submitted:

30 May 2020

Posted:

31 May 2020

You are already at the latest version

Abstract
Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy are blurred vision, changes in color perception, red spots, and eye pain. In this paper, a new methodology based on Convolutional Neural Networks (CNN) is developed and proposed to diagnose and give a decision about the presence of retinopathy. The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy. The performance of the proposed model is compared with the related methods of DREAM, KNN, GD-CNN and SVM. Experimental results show that the proposed CNN performs better.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

512

Views

441

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated