Preprint
Review
Version 1
Preserved in Portico This version is not peer-reviewed
Computational Strategies to Combat COVID-19: Useful Tools to Accelerate SARS-CoV-2 and Coronavirus Research
*
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
Version 1
: Received: 22 May 2020 / Approved: 23 May 2020 / Online: 23 May 2020 (11:01:11 CEST)
Hufsky, F.; Lamkiewicz, K.; Almeida, A.; Aouacheria, A.; Arighi, C.; Bateman, A.; Baumbach, J.; Beerenwinkel, N.; Brandt, C.; Cacciabue, M.; Chuguransky, S.; Drechsel, O.; Finn, R.D.; Fritz, A.; Fuchs, S.; Hattab, G.; Hauschild, A.; Heider, D.; Hoffmann, M.; Hölzer, M.; Hoops, S.; Kaderali, L.; Kalvari, I.; von Kleist, M.; Kmiecinski, R.; Kühnert, D.; Lasso, G.; Libin, P.; List, M.; Löchel, H.F.; Martin, M.J.; Martin, R.; Matschinske, J.; McHardy, A.C.; Mendes, P.; Mistry, J.; Navratil, V.; Nawrocki, E.; O'Toole, Á.N.; Palacios-Ontiveros, N.; Petrov, A.I.; Rangel-Piñeros, G.; Redaschi, N.; Reimering, S.; Reinert, K.; Reyes, A.; Richardson, L.; Robertson, D.L.; Sadegh, S.; Singer, J.B.; Theys, K.; Upton, C.; Welzel, M.; Williams, L.; Marz, M. Computational Strategies to Combat COVID-19: Useful Tools to Accelerate SARS-CoV-2 and Coronavirus Research. Preprints 2020 , 2020050376 (doi: 10.20944/preprints202005.0376.v1).
Hufsky, F.; Lamkiewicz, K.; Almeida, A.; Aouacheria, A.; Arighi, C.; Bateman, A.; Baumbach, J.; Beerenwinkel, N.; Brandt, C.; Cacciabue, M.; Chuguransky, S.; Drechsel, O.; Finn, R.D.; Fritz, A.; Fuchs, S.; Hattab, G.; Hauschild, A.; Heider, D.; Hoffmann, M.; Hölzer, M.; Hoops, S.; Kaderali, L.; Kalvari, I.; von Kleist, M.; Kmiecinski, R.; Kühnert, D.; Lasso, G.; Libin, P.; List, M.; Löchel, H.F.; Martin, M.J.; Martin, R.; Matschinske, J.; McHardy, A.C.; Mendes, P.; Mistry, J.; Navratil, V.; Nawrocki, E.; O'Toole, Á.N.; Palacios-Ontiveros, N.; Petrov, A.I.; Rangel-Piñeros, G.; Redaschi, N.; Reimering, S.; Reinert, K.; Reyes, A.; Richardson, L.; Robertson, D.L.; Sadegh, S.; Singer, J.B.; Theys, K.; Upton, C.; Welzel, M.; Williams, L.; Marz, M. Computational Strategies to Combat COVID-19: Useful Tools to Accelerate SARS-CoV-2 and Coronavirus Research. Preprints 2020, 2020050376 (doi: 10.20944/preprints202005.0376.v1).
Copy
Cite as:
Hufsky, F.; Lamkiewicz, K.; Almeida, A.; Aouacheria, A.; Arighi, C.; Bateman, A.; Baumbach, J.; Beerenwinkel, N.; Brandt, C.; Cacciabue, M.; Chuguransky, S.; Drechsel, O.; Finn, R.D.; Fritz, A.; Fuchs, S.; Hattab, G.; Hauschild, A.; Heider, D.; Hoffmann, M.; Hölzer, M.; Hoops, S.; Kaderali, L.; Kalvari, I.; von Kleist, M.; Kmiecinski, R.; Kühnert, D.; Lasso, G.; Libin, P.; List, M.; Löchel, H.F.; Martin, M.J.; Martin, R.; Matschinske, J.; McHardy, A.C.; Mendes, P.; Mistry, J.; Navratil, V.; Nawrocki, E.; O'Toole, Á.N.; Palacios-Ontiveros, N.; Petrov, A.I.; Rangel-Piñeros, G.; Redaschi, N.; Reimering, S.; Reinert, K.; Reyes, A.; Richardson, L.; Robertson, D.L.; Sadegh, S.; Singer, J.B.; Theys, K.; Upton, C.; Welzel, M.; Williams, L.; Marz, M. Computational Strategies to Combat COVID-19: Useful Tools to Accelerate SARS-CoV-2 and Coronavirus Research. Preprints 2020 , 2020050376 (doi: 10.20944/preprints202005.0376.v1).
Hufsky, F.; Lamkiewicz, K.; Almeida, A.; Aouacheria, A.; Arighi, C.; Bateman, A.; Baumbach, J.; Beerenwinkel, N.; Brandt, C.; Cacciabue, M.; Chuguransky, S.; Drechsel, O.; Finn, R.D.; Fritz, A.; Fuchs, S.; Hattab, G.; Hauschild, A.; Heider, D.; Hoffmann, M.; Hölzer, M.; Hoops, S.; Kaderali, L.; Kalvari, I.; von Kleist, M.; Kmiecinski, R.; Kühnert, D.; Lasso, G.; Libin, P.; List, M.; Löchel, H.F.; Martin, M.J.; Martin, R.; Matschinske, J.; McHardy, A.C.; Mendes, P.; Mistry, J.; Navratil, V.; Nawrocki, E.; O'Toole, Á.N.; Palacios-Ontiveros, N.; Petrov, A.I.; Rangel-Piñeros, G.; Redaschi, N.; Reimering, S.; Reinert, K.; Reyes, A.; Richardson, L.; Robertson, D.L.; Sadegh, S.; Singer, J.B.; Theys, K.; Upton, C.; Welzel, M.; Williams, L.; Marz, M. Computational Strategies to Combat COVID-19: Useful Tools to Accelerate SARS-CoV-2 and Coronavirus Research. Preprints 2020, 2020050376 (doi: 10.20944/preprints202005.0376.v1).
Copy
CANCEL
COPY CITATION DETAILS
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae . The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding, and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are freely available online, either through web applications or public code repositories.
Supplementary and Associated Material
Keywords
virus bioinformatics; SARS-CoV-2; sequencing; epidemiology; drug design; tools
Subject
LIFE SCIENCES, Virology
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (0)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.
what’s this?
Add a record of this review to Publons to track and showcase your reviewing expertise across the world’s journals.
×