Preprint Article Version 1 This version is not peer-reviewed

Grammar Guided Genetic Programming for Network Architecture Search and Road Detection on Aerial Orthophotography

Version 1 : Received: 1 May 2020 / Approved: 2 May 2020 / Online: 2 May 2020 (11:36:18 CEST)

A peer-reviewed article of this Preprint also exists.

de la Fuente Castillo, V.; Díaz-Álvarez, A.; Manso-Callejo, M.-Á.; Serradilla García, F. Grammar Guided Genetic Programming for Network Architecture Search and Road Detection on Aerial Orthophotography. Appl. Sci. 2020, 10, 3953. de la Fuente Castillo, V.; Díaz-Álvarez, A.; Manso-Callejo, M.-Á.; Serradilla García, F. Grammar Guided Genetic Programming for Network Architecture Search and Road Detection on Aerial Orthophotography. Appl. Sci. 2020, 10, 3953.

Journal reference: Appl. Sci. 2020, 10, 3953
DOI: 10.3390/app10113953

Abstract

Photogrammetry involves aerial photography of the earth’s surface and subsequently processing the images to provide a more accurate depiction of the area (Orthophotography). It’s used by the Spanish Instituto Geográfico Nacional to update road cartography but requires a significant amount of manual labor due to the need to perform visual inspection of all tiled images. Deep Learning techniques (artificial neural networks with more than one hidden layer) can perform road detection but it is still unclear how to find the optimal network architecture. Our system applies grammar guided genetic programming to the search of deep neural network architectures. In this kind of evolutive algorithm all the population individuals (here candidate network architectures) are constrained to rules specified by a grammar that defines valid and useful structural patterns to guide the search process. Grammar used includes well-known complex structures (e.g. Inception-like modules) combined with a custom designed mutation operator (dynamically links the mutation probability to structural diversity). Pilot results show that the system is able to design models for road detection that obtain test accuracies similar to that reached by state of the art models when evaluated over a dataset from the Spanish National Aerial Orthophotography Plan.

Subject Areas

Grammar Evolution; Deep Learning; Network Architecture Search; Grammar Guided Genetic Programming

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.