Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

IntruDTree: A Machine Learning-Based Cyber Security Intrusion Detection Model

Version 1 : Received: 27 April 2020 / Approved: 27 April 2020 / Online: 27 April 2020 (08:10:53 CEST)

A peer-reviewed article of this Preprint also exists.

Journal reference: Symmetry 2020
DOI: 10.3390/sym12050754

Abstract

Cyber security has recently received enormous attention in today’s security concerns, due to the popularity of the Internet-of-Things (IoT), the tremendous growth of computer networks, and the huge number of relevant applications. Thus, detecting various cyber-attacks or anomalies in a network and building an effective intrusion detection system that performs an essential role in today’s security is becoming more important. Artificial intelligence, particularly machine learning techniques, can be used for building such a data-driven intelligent intrusion detection system. In order to achieve this goal, in this paper, we present an Intrusion Detection Tree (“IntruDTree”) machine-learning-based security model that first takes into account the ranking of security features according to their importance and then build a tree-based generalized intrusion detection model based on the selected important features. This model is not only effective in terms of prediction accuracy for unseen test cases but also minimizes the computational complexity of the model by reducing the feature dimensions. Finally, the effectiveness of our IntruDTree model was examined by conducting experiments on cybersecurity datasets and computing the precision, recall, fscore, accuracy, and ROC values to evaluate. We also compare the outcome results of IntruDTree model with several traditional popular machine learning methods such as the naive Bayes classifier, logistic regression, support vector machines, and k-nearest neighbor, to analyze the effectiveness of the resulting security model.

Subject Areas

cybersecurity; cyber-attacks; anomaly detection; intrusion detection system; machine learning; network behavior analysis; cyber decision making; cybersecurity analytics; cyber threat intelligence.

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.