Preprint
Article

This version is not peer-reviewed.

SEIR Modeling of the Italian Epidemic of SARS-CoV-2 Using Computational Swarm Intelligence

A peer-reviewed article of this preprint also exists.

Submitted:

05 May 2020

Posted:

05 May 2020

You are already at the latest version

Abstract
We applied a generalized SEIR epidemiological model to the recent SARS-CoV-2 outbreak in the world, with a focus on Italy and its Lombardia, Piemonte, and Veneto regions. We focus on the application of a stochastic approach in fitting the model numerous parameters using a Particle Swarm Optimization (PSO) solver, to improve the reliability of predictions in the medium term (30 days). We analyze the official data and the predicted evolution of the epidemic in the Italian regions, and we compare the results with data and predictions of Spain and South Korea. We link the model equations to the changes in people’s mobility, with reference to Google’s COVID-19 Community Mobility Reports. We discuss the effectiveness of policies taken by different regions and countries and how they have an impact on past and future infection scenarios.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated