Preprint Article Version 1 This version is not peer-reviewed

Anti-COVID-19 Effects of Ten Structurally Different Hydrolysable Tannins through Binding with the Catalytic-Closed Sites of COVID-19 Main Protease: An In-Silico Approach

Version 1 : Received: 15 March 2020 / Approved: 17 March 2020 / Online: 17 March 2020 (15:43:48 CET)

How to cite: Khalifa, I.; Zhu, W.; Nafie, M.S.; Dutta, K.; Li, C. Anti-COVID-19 Effects of Ten Structurally Different Hydrolysable Tannins through Binding with the Catalytic-Closed Sites of COVID-19 Main Protease: An In-Silico Approach. Preprints 2020, 2020030277 (doi: 10.20944/preprints202003.0277.v1). Khalifa, I.; Zhu, W.; Nafie, M.S.; Dutta, K.; Li, C. Anti-COVID-19 Effects of Ten Structurally Different Hydrolysable Tannins through Binding with the Catalytic-Closed Sites of COVID-19 Main Protease: An In-Silico Approach. Preprints 2020, 2020030277 (doi: 10.20944/preprints202003.0277.v1).

Abstract

Coronavirus disease 2019 (COVID-19) was recently appeared all over the world. The viral main protease (3-chymotrypsin-like cysteine enzyme) controls COVID-19 duplication and manages its life cycle, making it a drug discovery target. Therefore, herein, we analyzed the theoretical approaches of 10 structurally different hydrolysable tannins as natural anti-COVID-19 through binding with the main protease of 2019-nCoV using molecular docking modelling via Molecular Operating Environment (MOE v2009) software. Our results revealed that there are top three hits may serve as potential anti-COVID-19 lead molecules for further optimization and drug development to control COVID-19. Pedunculagin, tercatain, and punicalin were found to faithfully interact with the receptor binding site and catalytic dyad (Cys145 and His41) of COVID-19 main protease, showing their successfully inhibit the protease enzyme of 2019-nCoV. We anticipated that this study would pave way for tannins based novel small molecules as more efficacious and selective anti-COVID-19 therapeutic compounds.

Subject Areas

COVID-19; hydrolysable tannins; protease; molecular docking; structural-relationship activity

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.