Preprint Article Version 1 This version is not peer-reviewed

Deep Learning for Stock Market Prediction

Version 1 : Received: 15 March 2020 / Approved: 16 March 2020 / Online: 16 March 2020 (01:45:16 CET)

How to cite: Nabipour, M.; Nayyeri, P.; Jabani, H.; Shamshirband, S.; Mosavi, A. Deep Learning for Stock Market Prediction. Preprints 2020, 2020030256 (doi: 10.20944/preprints202003.0256.v1). Nabipour, M.; Nayyeri, P.; Jabani, H.; Shamshirband, S.; Mosavi, A. Deep Learning for Stock Market Prediction. Preprints 2020, 2020030256 (doi: 10.20944/preprints202003.0256.v1).

Abstract

Prediction of stock groups values has always been attractive and challenging for shareholders. This paper concentrates on the future prediction of stock market groups. Four groups named diversified financials, petroleum, non-metallic minerals and basic metals from Tehran stock exchange are chosen for experimental evaluations. Data are collected for the groups based on ten years of historical records. The values predictions are created for 1, 2, 5, 10, 15, 20 and 30 days in advance. The machine learning algorithms utilized for prediction of future values of stock market groups. We employed Decision Tree, Bagging, Random Forest, Adaptive Boosting (Adaboost), Gradient Boosting and eXtreme Gradient Boosting (XGBoost), and Artificial neural network (ANN), Recurrent Neural Network (RNN) and Long short-term memory (LSTM). Ten technical indicators are selected as the inputs into each of the prediction models. Finally, the result of predictions is presented for each technique based on three metrics. Among all algorithms used in this paper, LSTM shows more accurate results with the highest model fitting ability. Also, for tree_based models, there is often an intense competition between Adaboost, Gradient Boosting and XGBoost.

Subject Areas

stock market prediction; machine learning; regressor models; tree-based methods; deep learning

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.