Preprint
Hypothesis

Two Achilles' Heels of the Ebolavirus Glycoprotein?

This version is not peer-reviewed.

Wei Li  *

Submitted:

10 March 2020

Posted:

11 March 2020

You are already at the latest version

Abstract
Ebolavirus has a membrane envelope decorated by trimers of a glycoprotein (GP), which is responsible for host cell attachment and membrane fusion. Therefore, GP is a primary target for antiviral drugs development. Here, this article reports the first, to my knowledge, set of structural analysis of all Ebolavirus GP structures as of March 10, 2020, and also a brief update of the structurally identified electrostatic features of the Ebolavirus GP structures in both apo (unliganded) state and also in bound states with a series of small compounds, including a variety of approved drugs. With this comprehensive set of structural analysis, this article puts forward a hypothesis of two Achilles' heels of Ebolavirus GP structure, where the formation of two interfacial salt bridges, instead of destabilizing the prefusion conformation of Ebolavirus GP, constitutes a positive contribution towards the structural rigidification of the prefusion conformation of the Ebolavirus GP structure, thereby acting against GP-mediated Ebolavirus cell entry and/or preventing fusion between the viral and endosome membranes.
Keywords: 
Ebolavirus glycoprotein; Electrostatic interaction; Salt bridging network; Two Achilles' heels
Subject: 
Biology and Life Sciences  -   Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

348

Views

204

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated