Preprint
Article

This version is not peer-reviewed.

Performance Analysis of Glioma Brain Tumor Segmentation using Ridgelet Transform and CANFES Methodology

Submitted:

03 March 2020

Posted:

04 March 2020

You are already at the latest version

Abstract
Objective:The Glioma brain tumor detection and segmentation methods are proposed in this paper using machine learning approaches. Methods:The boundary edge pixels are detected using Kirsch’s edge detectors and then contrast adaptive histogram equalization method is applied on the edge detected pixels. Then, Ridgelet transform is applied on this enhanced brain image in order to obtain the Ridgelet multi resolution coefficients. Further, features are derived from the Ridgelet transformed coefficients and the features are optimized using Principal Component Analysis (PCA) method and these optimized features are classified into Glioma or non-Glioma brain images using Co-Active Adaptive Neuro Fuzzy Expert System (CANFES) classifier.Results:The proposed method with PCA and CANFES classification approach obtains 97.6% of se, 98.56% of sp, 98.73% of Acc, 98.85% of Pr, 98.11% of FPR and 98.185 of FNR, then the proposed Glioma brain tumor detection method using CANFES classification approach only.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated