Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effective Platinum-Copper Catalysts for Methanol Oxidation and Oxygen Reduction in PEM FC

Version 1 : Received: 20 February 2020 / Approved: 24 February 2020 / Online: 24 February 2020 (03:56:11 CET)

A peer-reviewed article of this Preprint also exists.

Menshchikov, V.; Alekseenko, A.; Guterman, V.; Nechitailov, A.; Glebova, N.; Tomasov, A.; Spiridonova, O.; Belenov, S.; Zelenina, N.; Safronenko, O. Effective Platinum-Copper Catalysts for Methanol Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cell. Nanomaterials 2020, 10, 742. Menshchikov, V.; Alekseenko, A.; Guterman, V.; Nechitailov, A.; Glebova, N.; Tomasov, A.; Spiridonova, O.; Belenov, S.; Zelenina, N.; Safronenko, O. Effective Platinum-Copper Catalysts for Methanol Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cell. Nanomaterials 2020, 10, 742.

Abstract

Behavior of supported alloyed and de-alloyed platinum-copper catalysts, which contained 14% - 27% wt. of Pt, was studied in the reactions of methanol electrooxidation (MOR) and oxygen electroreduction (ORR) in 0.1 M HClO4 solutions. Alloyed PtCux/C catalysts were prepared by a multistage sequential deposition of copper and platinum onto a Vulcan XC72 dispersed carbon support. De-alloyed PtCux-y/C catalysts were prepared by PtCux/C materials pretreatment in acid solutions. The effects of the catalysts initial composition and the acid treatment condition on their composition, structure, and catalytic activity in MOR and ORR were studied. Functional characteristics of platinum-copper catalysts were compared with those of commercial Pt/C catalysts when tested, both in an electrochemical cell and in H2/Air membrane-electrode assembly (MEA). It was shown that the acid pretreatment of platinum-copper catalysts practically does not have negative effect on their catalytic activity, but it reduces the amount of copper passing into the solution during the subsequent electrochemical study. The activity of platinum-copper catalysts in the MOR and the current-voltage characteristics of the H2/Air PEMFC MEAs measured in the process of their life tests were much higher than those of the Pt/C catalysts.

Keywords

platinum electrocatalys; PtCu/C; oxygen electroreduction; methanol electrooxidation; catalyst activity; durability; fuel cell life tests; de-alloyed catalysts; PEM FC

Subject

Chemistry and Materials Science, Electrochemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.