Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Titanium Dioxide Nanoparticles – Prospects and Applications in Medicine

Version 1 : Received: 18 February 2020 / Approved: 19 February 2020 / Online: 19 February 2020 (10:44:08 CET)

A peer-reviewed article of this Preprint also exists.

Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials 2020, 10, 387. Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials 2020, 10, 387.

Journal reference: Nanomaterials 2020, 10, 387
DOI: 10.3390/nano10020387

Abstract

Metallic nanoparticles (NPs), among polymeric NPs, liposomes, micelles, quantum dots, dendrimers, or fullerenes, are becoming more and more important due to their potential use in the novel medical therapies. Titanium dioxide (titanium(IV) oxide, titania, TiO2) is an inorganic compound that owes its recent rise in scientific interest to photoactivity. After the illumination in aqueous media with UV light, TiO2 produces an array of reactive oxygen species (ROS). The capability to produce ROS and thus induce cell death has found application in the photodynamic therapy (PDT) for the treatment of a wide range of maladies, from psoriasis to cancer. Titanium dioxide NPs were studied as photosensitizing agents in the treatment of malignant tumors as well as in photodynamic inactivation of antibiotic-resistant bacteria. Both TiO2 NPs themselves, as well as their composites with other molecules, can be successfully used as photosensitizers in PDT. Moreover, various organic compounds can be grafted on TiO2 NPs, leading to hybrid materials. These nanostructures can reveal increased light absorption allowing their further use in targeted therapy in medicine. In order to improve efficient anticancer therapy, many approaches utilizing titanium dioxide were tested. The most significant studies are discussed in this review.

Subject Areas

composites; nanoparticles; photodynamic therapy; photosensitizer; titanium dioxide

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.