Preprint
Article

This version is not peer-reviewed.

Predictive Modeling of Henry’s Law Constant in Chemical Structures Using LSSVM and ANFIS Algorithms

Submitted:

16 February 2020

Posted:

17 February 2020

You are already at the latest version

Abstract
Henry’s constants for different existing compounds in water have great importance in transfer calculations. Measurement of these constants face different difficulties including high costs of experiment and low accuracy of measurement apparatus. Due to these facts, proposing a low cost and accurate approach becomes highlighted. To this end, adaptive neuro-fuzzy inference system (ANFIS) and least squares support vector machine (LSSVM) have been used as Henry’s constant predictor tools. The molecular structure of compounds has been used as inputs of models. After training the models, the visual and mathematical studies of outputs have been done. The coefficients of determination of LSSVM and ANFIS algorithms are 0.999 and 0.990 respectively. According to the comprehensiveness of databank and accurate prediction of algorithms, it can be concluded that LSSVM and ANFIS algorithms are accurate methods for prediction of Henry’s constant in wide range of chemical structure of compounds in water.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated