Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Modulation of Adhesion Process, E-Selectin and VEGF Production by Anthocyanins and Their Metabolites in an In-Vitro Model of Atherosclerosis

Version 1 : Received: 10 January 2020 / Approved: 11 January 2020 / Online: 11 January 2020 (14:51:26 CET)

A peer-reviewed article of this Preprint also exists.

Marino, M.; Del Bo’, C.; Tucci, M.; Klimis-Zacas, D.; Riso, P.; Porrini, M. Modulation of Adhesion Process, E-Selectin and VEGF Production by Anthocyanins and Their Metabolites in an in vitro Model of Atherosclerosis. Nutrients 2020, 12, 655. Marino, M.; Del Bo’, C.; Tucci, M.; Klimis-Zacas, D.; Riso, P.; Porrini, M. Modulation of Adhesion Process, E-Selectin and VEGF Production by Anthocyanins and Their Metabolites in an in vitro Model of Atherosclerosis. Nutrients 2020, 12, 655.

Abstract

The present study aims to evaluate the ability of peonidin and petunidin-3-glucoside (Peo and Pet-3-glc) and their metabolites (vanillic acid; VA and methyl-gallic acid; MetGA), to prevent monocyte (THP-1) adhesion to endothelial cells (HUVECs), and to reduce the production of VCAM-1, E-selectin and VEGF in a stimulated pro-inflammatory environment, a pivotal step of atherogenesis. Tumor necrosis factor-α (TNF-α; 100 ng mL-1) was used to stimulate the adhesion of labelled monocytes (THP-1) to endothelial cells (HUVECs). Successively, different concentrations of Peo-3-glc and Pet-3-glc (0.02, 0.2, 2 and 20 µM) and VA and MetGA (0.05, 0.5, 5 and 50 µM) were tested. After 24 h, the production of VCAM-1, E-selectin and VEGF was quantified by ELISA kits, while the adhesion process was measured spectrophotometrically. Peo-3-glc and Pet-3-glc (from 0.02 to 20 µM) significantly (p<0.0001) decreased THP-1 adhesion to HUVECs at all concentrations (-37%, -24%, -30% and -47% for Peo-3-glc; -37%, -33%, -33% and -45% for Pet-3-glc). VA, but not MetGA, reduced the adhesion process at 50 µM (-21%; p<0.001). At the same concentrations, a significant (p<0.0001) reduction of E-selectin, but not VCAM-1, was documented. In addition, anthocyanins and their metabolites significantly decreased (p<0.001) VEGF production. The present findings suggest, that while Peo-3-glc and Pet-3-glc, but not their metabolites, reduced monocyte adhesion to endothelial cells through suppression of E-selectin production, VEGF production was reduced by both anthocyanins and their metabolites suggesting a role in regulation of angiogenesis.

Keywords

anthocyanins and metabolites; inflammation; adhesion molecules; vascular endothelial growth factor; monocytes; endothelial cells

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.