Preprint
Article

Microphone and Loudspeaker Array Signal Processing to Build a "Radiation Keyboard" for Authentic Samplers

This version is not peer-reviewed.

Submitted:

06 January 2020

Posted:

07 January 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
To date electric pianos and samplers tend to concentrate on authenticity in terms of temporal and spectral aspects of sound. They barely recreate the original sound radiation characteristics, contribute to the perception of width and depth, vividness and voice separation, especially for instrumentalists, who are located in the near field. This paper describes an operational procedure to measure, store, and synthesize the complete sound of a harpsichord, including its spatial sound radiation characteristics. First, actuators excite the instrument at the intersection point of each string with the bridge with an exponential sine-sweep. Then, the radiated sound field is recorded in the near and the far field with microphone arrays. The pressure distribution in the near field is propagated back to the soundboard of the instrument, using Minimum Energy Method. The vibration of each single string is captured with lightweight contact microphones. The soundboard is then replaced by an array of 128 loudspeakers. The loudspeaker signal is a convolution of the back-propagated sweep recording with the string recording to perform a wave field synthesis. Above the spatial Nyquist frequency, the Radiation Method is applied to perform a sound field synthesis which is valid for the listening region of the instrumentalist. The result is an electric harpsichord, that approximates the sound of a real harpsichord precisely in time, frequency, and space domain. Applications for such a radiation keyboard are music performance, instrument and synthesizer building and interactive psychoacoustic research.
Keywords: 
microphone array; wave field synthesis; acoustic holography; sampler; synthesizer
Subject: 
Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

250

Views

216

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated