Preprint
Article

This version is not peer-reviewed.

Of Fire and Smoke Plumes, Polarimetric Characteristics

Submitted:

31 December 2019

Posted:

02 January 2020

You are already at the latest version

Abstract
Weather surveillance radars routinely detect smoke of various origin. Of particular significance to the meteorological community are wildfires in forests and/or prairies. For example, one responsibility of the National Weather Service in the USA is to forecast fire outlooks as well as to monitor wild fire evolution. Polarimetric variables have enabled relatively easy recognitions of smoke plumes in data fields of weather radars. Presented here are the fields of these variables from smoke plumes caused by grass fire, brush fire, and forest fire. Histograms of polarimetric data from plumes contrast these three cases. Most of the data are from the polarimetric Weather Surveillance Radar 1988 Doppler (WSR-88D aka Nexrad, 10 cm wavelength) hence the wavelength does not influence these comparisons. Nevertheless, in one case simultaneous observations of a plume by the operational Terminal Doppler Weather Radar (TDWR, 5 cm wavelength) and a WSR-88D is used to infer backscattering characteristic and hence sizes of dominant contributors to the returns. In addition, comparisons with observations by other investigators of plumes from urban area but at a 5 cm wavelength are made. To interpret some measurements Computational Electromagnetics (CEM) tools are applied.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated