Preprint Article Version 1 This version is not peer-reviewed

The Influence of Synthesis Parameters on Structural and Magnetic Properties of Iron Oxide Nanomaterials

Version 1 : Received: 2 December 2019 / Approved: 4 December 2019 / Online: 4 December 2019 (04:10:31 CET)

How to cite: Cursaru, L.; Piticescu, R.M.; Dragut, D.V.; Tudor, I.A.; Kuncser, V.; Iacob, N.; Stoiciu, F. The Influence of Synthesis Parameters on Structural and Magnetic Properties of Iron Oxide Nanomaterials. Preprints 2019, 2019120036 (doi: 10.20944/preprints201912.0036.v1). Cursaru, L.; Piticescu, R.M.; Dragut, D.V.; Tudor, I.A.; Kuncser, V.; Iacob, N.; Stoiciu, F. The Influence of Synthesis Parameters on Structural and Magnetic Properties of Iron Oxide Nanomaterials. Preprints 2019, 2019120036 (doi: 10.20944/preprints201912.0036.v1).

Abstract

Magnetic iron oxide particles are used for in vitro diagnostics for nearly 40 years. Due to their unique physical, chemical, thermal and mechanical properties, as well as biocompatibility and low toxicity in the human body, iron oxide nanoparticles have been used in many biomedical applications, such as contrast agents for magnetic resonance imaging, carriers for controlled drug delivery and immunoassays, but also in magnetic hyperthermia. Our aim is to investigate the effect of pressure and temperature on the structural, thermal and magnetic properties of iron oxide nanomaterials prepared by hydrothermal synthesis. Iron oxide nanoparticles were synthesized at temperatures of 100-200°C and pressures of 20-1000 bar. It has been found that pressure influences the type of iron oxide crystalline phase. Thus, for lower pressure values (< 100 bar), iron oxide is predominantly formed as hematite, while at pressures > 100 bar, the major crystalline phase is goethite. The complex thermal analysis revealed the polymorphic changes of iron oxides at different temperatures. The existence of specific magnetite and hematite phases in all thermally treated samples are evidenced through the specific Verwey and Morin transitions highlighted by ZFC-FC (Zero Field Cooled-Field Cooled) measurements, whereas their relative content is precisely provided by Mössbauer spectroscopy.

Subject Areas

iron oxide nanoparticles; hydrothermal synthesis; high pressure; magnetic properties; thermal stability

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.