Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Nonlocal Reaction-Diffusion Model of Viral Evolution: Emergence of Virus Strains

Version 1 : Received: 2 December 2019 / Approved: 4 December 2019 / Online: 4 December 2019 (03:59:20 CET)

A peer-reviewed article of this Preprint also exists.

Bessonov, N.; Bocharov, G.; Meyerhans, A.; Popov, V.; Volpert, V. Nonlocal Reaction–Diffusion Model of Viral Evolution: Emergence of Virus Strains. Mathematics 2020, 8, 117. Bessonov, N.; Bocharov, G.; Meyerhans, A.; Popov, V.; Volpert, V. Nonlocal Reaction–Diffusion Model of Viral Evolution: Emergence of Virus Strains. Mathematics 2020, 8, 117.

Abstract

The work is devoted to the investigation of virus quasispecies evolution and diversification due to mutations, competition for host cells, and cross-reactive immune responses. The model consists of a nonlocal reaction-diffusion equation for the virus density depending on the genotype considered as a continuous variable and on time. This equation contains two integral terms corresponding to the nonlocal effects of virus interaction with host cells and with immune cells. In the model, a virus strain is represented by a localized solution concentrated around some given genotype. Emergence of new strains corresponds to a periodic wave propagating in the space of genotypes. The conditions of appearance of such waves and their dynamics are described.

Keywords

virus density distribution; genotype; virus infection; immune response; resistance to treatment; nonlocal interaction; quasispecies diversification

Subject

Computer Science and Mathematics, Applied Mathematics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.