Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Chemical Reaction Networks Possess Intrinsic, Temperature Dependent Functionality

Version 1 : Received: 2 December 2019 / Approved: 4 December 2019 / Online: 4 December 2019 (02:44:02 CET)

A peer-reviewed article of this Preprint also exists.

Adler, S.O.; Klipp, E. Chemical Reaction Networks Possess Intrinsic, Temperature-Dependent Functionality. Entropy 2020, 22, 117. Adler, S.O.; Klipp, E. Chemical Reaction Networks Possess Intrinsic, Temperature-Dependent Functionality. Entropy 2020, 22, 117.

Abstract

Temperature influences the life of many organisms in various ways. A great number of them live under conditions, where their ability to adapt to changes in temperature can be vital and largely determine their fitness. Understanding the mechanisms and principles underlying this ability to adapt can be of great advantage, for example, to improve growth conditions for crops and increase their yield. In times of imminent, increasing climate change, this becomes even more important, in order to find strategies and help crops cope with these fundamental changes. There is intense research in the field of acclimation, that comprises fluctuations of various environmental conditions, but most acclimation research focuses on regulatory effects and the observation of gene expression changes within the examined organism. As thermodynamic effects are a direct consequence of temperature changes, these should necessarily be considered in this field of research, but are often neglected. Also, compensated effects might be missed, even though they are equally important for the organism, since they do not cause observable changes, but rather counteract them. In this work, using a systems biology approach, we demonstrate that even simple network motifs can exhibit temperature dependent functional features, resulting from the interplay of network structure and the distribution of activation energies over the involved reactions. The demonstrated functional features are (i) the reversal of fluxes within a linear pathway, (ii) a thermo-selective branched pathway with different flux modes and (iii) the increased flux towards carbohydrates in a minimal calvin cycle that was designed to demonstrate temperature compensation within reaction networks. By this, we expand the scope of thermodynamic modelling of biochemical processes by addressing further possibilities and effects, following established mathematical descriptions of biophysical properties.

Keywords

temperature dependence, flux reversal, entropy production density

Subject

Biology and Life Sciences, Biophysics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.