Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Performance-Enhanced Non-Enzymatic Glucose Sensor Based on Graphene-Heterostructure

Version 1 : Received: 28 November 2019 / Approved: 29 November 2019 / Online: 29 November 2019 (11:16:08 CET)

A peer-reviewed article of this Preprint also exists.

Sakr, M.A.; Elgammal, K.; Delin, A.; Serry, M. Performance-Enhanced Non-Enzymatic Glucose Sensor Based on Graphene-Heterostructure. Sensors 2020, 20, 145. Sakr, M.A.; Elgammal, K.; Delin, A.; Serry, M. Performance-Enhanced Non-Enzymatic Glucose Sensor Based on Graphene-Heterostructure. Sensors 2020, 20, 145.

Abstract

Non-enzymatic glucose sensing is a crucial field of study because of the current market demand. This study proposes a novel design of glucose sensor with enhanced selectivity and sensitivity by using graphene Schottky diodes, which is composed of Graphene/Platinum Oxide/n-Silicon heterostructure. The sensor was tested with different glucose concentrations and interfering solutions to investigate its sensitivity and selectivity. Different structures of the device were studied by adjusting the platinum oxide film thickness to investigate its catalytic activity. It was found that the film thickness plays a significant role in the efficiency of glucose oxidation and hence in overall device sensitivity. Moreover, theoretical investigations were conducted using Density Function Theory (DFT) to better understand the detection method and the origins of selectivity. The working principle of the sensors puts it in a competitive position with other non-enzymatic glucose sensors. DFT calculations provided a qualitative explanation of the charges distributed across the graphene sheet within a system of a platinum substrate with D-glucose molecules above. The proposed graphene/PtO/n-Si heterostructure has proven to satisfy these factors, which opens the door for further developments of more reliable non-enzymatic glucometers for continuous glucose monitoring systems.

Keywords

graphene; electrochemical; biosensor; heterostructure; non-enzymatic; schottky diode; glucose; glucometers; ald; pto

Subject

Chemistry and Materials Science, Nanotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.