Preprint
Article

Highly Efficient, ITO-Free Polymer Solar Cells Using Ultrathin Copper Film as Transparent Electrode

This version is not peer-reviewed.

Submitted:

06 November 2019

Posted:

07 November 2019

You are already at the latest version

Abstract
Here we report highly efficient, indium tin oxide (ITO)-free polymer solar cells (PSCs) with an ultrathin copper (Cu) film(~10 nm) coated with a thin layer of poly[(9,9-bis(3‘-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as transparent electrode. Despite of its lower far-field transmittance of the electrode, the obtained ITO-free device based on the ultrathin Cu film can delivery higher absorption efficiency than that of the device based on ITO substrate in the long wavelength region, which can be attributed to the formation of metal resonant microcavity between the opaque back metal mirror (MoO3/Al electrode) and the transparent Cu film with high reflectance. As a result, polymer solar cells based on poly[[2,6'-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene][3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7-Th) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend show a high power conversion efficiency (PCE) of 8.21 %, comparable to that of the control device based on ITO electrode (with a PCE of 9.60% ). The results demonstrate that thermally evaporated Cu thin film electrode can be promising candidate to replace ITO for highly efficient PSCs, thus may open up the possibility for massive production of PSCs with low cost.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

322

Views

322

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated