Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

In Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism

Version 1 : Received: 4 November 2019 / Approved: 5 November 2019 / Online: 5 November 2019 (03:04:02 CET)

A peer-reviewed article of this Preprint also exists.

Sen, N.-E.; Arsovic, A.; Meierhofer, D.; Brodesser, S.; Oberschmidt, C.; Canet-Pons, J.; Kaya, Z.-E.; Halbach, M.-V.; Gispert, S.; Sandhoff, K.; Auburger, G. In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism. Int. J. Mol. Sci. 2019, 20, 5854. Sen, N.-E.; Arsovic, A.; Meierhofer, D.; Brodesser, S.; Oberschmidt, C.; Canet-Pons, J.; Kaya, Z.-E.; Halbach, M.-V.; Gispert, S.; Sandhoff, K.; Auburger, G. In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism. Int. J. Mol. Sci. 2019, 20, 5854.

Abstract

Ataxin-2 (ATXN2) acts during stress-responses, modulating mRNA translation and nutrient metabolism. Atxn2 knockout mice exhibit progressive obesity, dyslipidemia and insulin resistance. Conversely, the progressive ATXN2 gain-of-function due to polyGlutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2), with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-KnockIn (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin and gangliosides GM1a/GD1b, despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides, with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, of Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide-sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very-long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage, not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals, so our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode and mouse orthologs as mTORC1 inhibitors and autophagy promoters.

Keywords

olivo-ponto-cerebellar atrophy (OPCA); amyotrophic lateral sclerosis (ALS); tauopathy; leukodystrophy; mass spectrometry; RT-qPCR; Ceramide Synthase (CERS2/CERS1); Serine Palmitoyltransferase 2 (Sptlc2); neutral Sphingomyelinase (Smpd3); neutral Ceramidase (Asah2); Fatty Acid Elongase (Elovl1/4/5); SCA34; SCA38; acid Sphingomyelinase (ASMase, Smpd1)

Subject

Biology and Life Sciences, Endocrinology and Metabolism

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.