Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Megavoltage Radiosensitization of Gold Nanoparticles on Glioblastoma Cancer Cell Line Using a Clinical Platform

Version 1 : Received: 27 October 2019 / Approved: 28 October 2019 / Online: 28 October 2019 (10:46:14 CET)

A peer-reviewed article of this Preprint also exists.

Kazmi, F.; Vallis, K.A.; Vellayappan, B.A.; Bandla, A.; Yukun, D.; Carlisle, R. Megavoltage Radiosensitization of Gold Nanoparticles on a Glioblastoma Cancer Cell Line Using a Clinical Platform. Int. J. Mol. Sci. 2020, 21, 429. Kazmi, F.; Vallis, K.A.; Vellayappan, B.A.; Bandla, A.; Yukun, D.; Carlisle, R. Megavoltage Radiosensitization of Gold Nanoparticles on a Glioblastoma Cancer Cell Line Using a Clinical Platform. Int. J. Mol. Sci. 2020, 21, 429.

Abstract

Gold nanoparticles (GNPs) have demonstrated significant dose enhancement with kilovoltage (kV) X-rays however recent studies have shown inconsistent findings with megavoltage (MV) X-rays. We proposed to evaluate the radiosensitization effect in U87 glioblastoma (GBM) cells in the presence of 42 nm GNPs and irradiated with a clinical 6 MV photon beam. Cytotoxicity and radiosensitization was observed using MTS and clonogenic cellular radiation sensitivity assays respectively. Sensitization enhancement ratio was calculated for 2 Gy (SER2Gy) with GNP (100 μg/mL). Dark field and MTS assay revealed high co-localization and good biocompatibility of the GNPs with GBM cells. Significant sensitization enhancement of 1.45 (P = 0.001) was observed with GNP 100 μg/mL. Similarly, at 6 Gy there was significant difference in the survival fraction between GBM alone group (Mean (M) = 0.26, Standard Deviation (SD) = 0.008) and GBM plus GNP group (M = 0.07, SD = 0.05, P = 0.03). GNPs enable radiosensitization in U87 GBM cells at 2 Gy when irradiated using a clinical platform. In addition to the potential clinical utility of GNPs, these studies demonstrate the effectiveness of a robust and easy to standardise in-vitro model that can be employed for future studies involving metal nanoparticle plus irradiation.

Keywords

nanoparticles; glioblastoma multiforme; radiosensitizers; external beam radiotherapy

Subject

Medicine and Pharmacology, Oncology and Oncogenics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.