Working Paper Article Version 1 This version is not peer-reviewed

Metal-Insulator Transition in Three-Dimensional Semiconductors

Version 1 : Received: 21 October 2019 / Approved: 22 October 2019 / Online: 22 October 2019 (15:40:00 CEST)

How to cite: Ziegler, K. Metal-Insulator Transition in Three-Dimensional Semiconductors. Preprints 2019, 2019100260 Ziegler, K. Metal-Insulator Transition in Three-Dimensional Semiconductors. Preprints 2019, 2019100260

Abstract

We use a random gap model to describe a metal-insulator transition in three-dimensional semiconductors due to doping and find a conventional phase transition, where the effective scattering rate is the order parameter. Spontaneous symmetry breaking results in metallic behavior, whereas the insulating regime is characterized by the absence of spontaneous symmetry breaking. The transition is continuous for the average conductivity with critical exponent equal to 1. Away from the critical point the exponent is roughly 0.6, which may explain experimental observations of a crossover of the exponent from 1 to 0.5 by going away from the critical point.

Subject Areas

particle-hole symmetry; metal-insulator transition; random gap model

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.