Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Finding a Tandem Repeats Motifs in the Completed Genomes of Human Coronavirus (hku1) Which is Identified as a Hotspot Region for the Viruses Recombination by Using Regular Expression Language

Version 1 : Received: 19 October 2019 / Approved: 22 October 2019 / Online: 22 October 2019 (04:11:40 CEST)

How to cite: Hassan, M.A.E.; Hasan, M.E. Finding a Tandem Repeats Motifs in the Completed Genomes of Human Coronavirus (hku1) Which is Identified as a Hotspot Region for the Viruses Recombination by Using Regular Expression Language. Preprints 2019, 2019100249. https://doi.org/10.20944/preprints201910.0249.v1 Hassan, M.A.E.; Hasan, M.E. Finding a Tandem Repeats Motifs in the Completed Genomes of Human Coronavirus (hku1) Which is Identified as a Hotspot Region for the Viruses Recombination by Using Regular Expression Language. Preprints 2019, 2019100249. https://doi.org/10.20944/preprints201910.0249.v1

Abstract

A lot of research studies have been surveyed the completed genomes of prokaryotic and eukaryotic and focused on the correlation between the percentage of microsatellite sequences in completed genomes and the whole size of the organism genomes. There are fewer studies made in repetitive sequences otherwise simple sequence repeats or long tandem repeats of virus genomes. simple sequence repeats (SSRs) are the most important regions for recombination and moving repeats blocks from site to another site in the genomes. A tool was programmed and designed by visual basic 6.0 to find the long tandem repeats in DNA sequences of the small genomes. The tool named “Repeater Finder Regular Expression”, (RFRE) Version 1.0, 2016. The tool was utilized to discover different pattern of long tandem repeats (LTR) motifs on the completed genomes of human corona virus strains by using a joined regular expression language. In this study, a twenty-nine accession numbers of human coronavirus completed genomes, (hku1) strains were retrieved from the Genbank. The researcher can write a different regular expression patterns and joined regular expression patterns through the designed tool to search and find a specific motif of nucleotide sequences inside the complete genomes. The RFRE tool searched and found three different total lengths of a perfect long tandem repeats (240bp, 300bp and 480bp). A Dot plot gave a picture view for the long tandem repeat sequences in the completed genome sequence (KF430201.1) of human coronavirus. The genomic dot plot tool YASS was used as a genomic similarity searching tool to check for the uninterrupted repeats and confirm the sensitivity of the (RFRE) tool. To identify the recombination site in the genomes of human coronavirus the RAT tool was applied to find the recombination sites between the completed genomes of human corona viruses .The RAT tool recognized the recombination site in the nucleotide position (3012) and at the same time this recombination site position (3012) was also recognized as a beginning position of a long tandem repeat. A precise motif was predicted from the translated repeats of Human Corona Virus which found by PRATT tool. There was a relationship between the total length of long tandem repeats and genome size of Human Corona Virus and the correlation value R2 was equal to (0,451). In conclusion, this study presented the importance of finding the long tandem repeats of human coronavirus and gives a relationship between the completed genome size of human coronavirus types and long tandem repeats. The nucleotide position (3012) was a hot spot site for a recombination among the complete genomes of human coronavirus and also identified as a repetitive site in the genomes of human corona virus (hku1). The repeats in human coronavirus (hku1) were predicated to be a main major role of virus evolution.

Keywords

repeats blocks; repeater finder regular expression; tandem repeats of human coronavirus

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.