Preprint
Article

This version is not peer-reviewed.

Quasi Cubic Trigonometric Curve and Surface

Submitted:

17 October 2019

Posted:

18 October 2019

You are already at the latest version

Abstract
Firstly, a new set of Quasi-Cubic Trigonometric Bernstein basis with two tension shape parameters is constructed, and we prove that it is an optimal normalized totally basis in the framework of Quasi Extended Chebyshev space. And the Quasi-Cubic Trigonometric Bézier curve is generated by the basis function and the cutting algorithm of the curve are given, the shape features (cusp, inflection point, loop and convexity) of the Quasi-Cubic Trigonometric Bézier curve are analyzed by using envelope theory and topological mapping; Next we construct the non-uniform Quasi-Cubic Trigonometric B-spline basis by assuming the linear combination of the optimal normalized totally positive basis have partition of unity and continuity, and its expression is obtained. And the non-uniform B-spline basis is proved to have totally positive and high-order continuity. Finally, the non-uniform Quasi Cubic Trigonometric B-spline curve and surface are defined, the shape features of the non-uniform Quasi-Cubic Trigonometric B-spline curve are discussed, and the curve and surface are proved to be continuous.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated