Preprint
Article

This version is not peer-reviewed.

DSRNet: A Novel Feature Extraction Network Achieving Trade off between Accuracy and Speed

Submitted:

12 September 2019

Posted:

14 September 2019

You are already at the latest version

Abstract
It is important to reduce the computation complexity while maintaining the accuracy of convolution neural networks. We deem it is possible to further reduce the network complexity while ensuring the accuracy. In this paper, we propose a novel feature extraction network called DSRNet which is lightweight but effective. DSRNet follows the basic ideas of stacking modules and short connection, introduces Depthwise Separable convolution and utilizes the Dilated convolution. The proposed network has fewer parameters and achieves outstanding speed. We conducted comprehensive experiments on CIFAR10, CIFAR100 and STL10 datasets, and the results showed the DSRNet has great performance improvement in terms of accuracy and speed.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated