Preprint
Article

This version is not peer-reviewed.

Navigation Algorithm Based on the Boundary Line of New and Old Soil Combined Using Guided Filtering and Improved Anti-noise Morphology

A peer-reviewed article of this preprint also exists.

Submitted:

26 August 2019

Posted:

27 August 2019

You are already at the latest version

Abstract
An improved anti-noise morphology vision navigation algorithm is proposed for intelligent tractor tillage in a complex agricultural field environment. At first the two key steps, Guided Filtering and improved anti-noise morphology navigation line extraction were addressed in detail. Then the experiments were carried out in order to verify the effectiveness and advancement of the presented algorithm. Finally, the optimal template and it’s application condition were studied for improving the image processing speed. The comparison experiment results show that the YCbCr color space has minimum time consumption of 0.094 s in comparison with HSV, HIS and 2R-G-B color spaces. The Guided Filtering method can effectively distinguish the boundary between the new and old soil than other competing vanilla methods such as Tarel, Multi-scale Retinex, Wavelet-based Retinex and Homomorphic Filtering inspite of having the fastest processing speed of 0.113 s. The extracted soil boundary line of the improved anti-noise morphology algorithm has best precision and speed compared with other operators such as Sobel, Roberts, Prewitt and Log. After comparing different size of image template, the optimal template with the size of 140×260 pixels can meet high precision vision navigation while the course deviation angle is not more than 7.5°. The maximum tractor speed of the optimal template and global template are 51.41 km/h and 27.47 km/h respectively which can meet real-time vision navigation requirement of the smart tractor tillage operation in the field. The experimental vision navigation results demonstrated the feasibility of the autonomous vision navigation for tractor tillage operation in the field using the new and old soil boundary line extracted by the proposed improved anti-noise morphology algorithm which has broad application prospect.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated