Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Dysprosium Removal from Water Using Active Carbons Obtained from Spent Coffee Ground

Version 1 : Received: 5 August 2019 / Approved: 6 August 2019 / Online: 6 August 2019 (12:23:23 CEST)

A peer-reviewed article of this Preprint also exists.

Alcaraz, L.; Escudero, M.E.; Alguacil, F.J.; Llorente, I.; Urbieta, A.; Fernández, P.; López, F.A. Dysprosium Removal from Water Using Active Carbons Obtained from Spent Coffee Ground. Nanomaterials 2019, 9, 1372. Alcaraz, L.; Escudero, M.E.; Alguacil, F.J.; Llorente, I.; Urbieta, A.; Fernández, P.; López, F.A. Dysprosium Removal from Water Using Active Carbons Obtained from Spent Coffee Ground. Nanomaterials 2019, 9, 1372.

Abstract

This paper describes the physico-chemical study of the adsorption of dysprosium (Dy3+) in aqueous solution onto two types of activated carbons synthesized from spent coffee ground. KOH activated carbon is a microporous material with a specific BET surface area of 2330 m2·g-1 and pores with a diameter of 3.2 nm. Carbon activated with water vapor and N2 is a solid mesoporous, with pores of 5.7 nm in diameter and a specific surface of 982 m2·g-1. A significant dependence of the adsorption capacity on the solution pH was found, while it does not depend significantly neither on the dysprosium concentration nor on the temperature. A maximum adsorption capacity of 31.26 mg·g-1 and 33.52 mg·g-1 for the chemically and physically activated carbons, respectively, were found. In both cases, the results obtained from adsorption isotherms and kinetic study were better fit to a Langmuir model and a pseudo-second-order kinetics. In addition, thermodynamic results indicate that dysprosium adsorption onto both activated carbons is an exothermic, spontaneous and favorable process.

Keywords

dysprosium; activated carbon; spent coffee ground; adsorption

Subject

Chemistry and Materials Science, Applied Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.