Preprint Article Version 1 This version is not peer-reviewed

MS-Based Approaches Enable the Structural Characterization of Transcription Factor / DNA Response Element Complex

Version 1 : Received: 19 July 2019 / Approved: 22 July 2019 / Online: 22 July 2019 (08:03:27 CEST)

How to cite: Slavata, L.; Chmelik, J.; Kavan, D.; Filandrova, R.; Fiala, J.; Rosulek, M.; Mrazek, H.; Kukacka, Z.; Valis, K.; Man, P.; Miller, M.; McIntyre, W.; Fabris, D.; Novak, P. MS-Based Approaches Enable the Structural Characterization of Transcription Factor / DNA Response Element Complex. Preprints 2019, 2019070233 (doi: 10.20944/preprints201907.0233.v1). Slavata, L.; Chmelik, J.; Kavan, D.; Filandrova, R.; Fiala, J.; Rosulek, M.; Mrazek, H.; Kukacka, Z.; Valis, K.; Man, P.; Miller, M.; McIntyre, W.; Fabris, D.; Novak, P. MS-Based Approaches Enable the Structural Characterization of Transcription Factor / DNA Response Element Complex. Preprints 2019, 2019070233 (doi: 10.20944/preprints201907.0233.v1).

Abstract

The limited information available on the structure of complexes involving transcription factors and cognate DNA response elements represents a major obstacle in the quest to understand their mechanism of action at the molecular level. We implemented a concerted structural proteomics approach, which combined hydrogen-deuterium exchange (HDX), quantitative protein-protein and protein-nucleic acid cross-linking (XL), and homology analysis, to model the structure of the complex between the full-length DNA binding domain (DBD) of FOXO4 and its DNA binding element (DBE). The results confirmed that FOXO4-DBD assumes the characteristic forkhead topology shared by these types of transcription factors, but its binding mode differs significantly from those of other members of the family. The results showed that the binding interaction stabilized regions that were rather flexible and disordered in the unbound form. Surprisingly, the conformational effects were not limited only to the interface between bound components but extended also to distal regions that may be essential to recruiting additional factors to the transcription machinery. In addition to providing valuable new insights into the binding mechanism, this project provided an excellent evaluation of the merits of structural proteomics approaches in the investigation of systems that arematerial not directly amenable to traditional high-resolution techniques.

Subject Areas

transcription factor; protein; DNA; protein-nucleic acid cross-linking; quantitative cross-linking; transplatin; trans-dichlorodiamineplatinum(II); hydrogen-deuterium exchange; FOXO4; molecular modeling; molecular docking

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.