Working Paper Article Version 1 This version is not peer-reviewed

Phenomenological Model Coupling Stress Transfer with Photon Diffusion for Interpreting the Kinetics of Delayed Ultraweak Photon Emission from Organism in Response to a Bolus or Step Stress

Version 1 : Received: 7 July 2019 / Approved: 8 July 2019 / Online: 8 July 2019 (06:08:03 CEST)

How to cite: Piao, D. Phenomenological Model Coupling Stress Transfer with Photon Diffusion for Interpreting the Kinetics of Delayed Ultraweak Photon Emission from Organism in Response to a Bolus or Step Stress. Preprints 2019, 2019070107 Piao, D. Phenomenological Model Coupling Stress Transfer with Photon Diffusion for Interpreting the Kinetics of Delayed Ultraweak Photon Emission from Organism in Response to a Bolus or Step Stress. Preprints 2019, 2019070107

Abstract

Much remains to be understood for delayed ultraweak photon emission (UPE) from organism in association with oxidative burst following external perturbation, a phenomenon that has been experimented for over three decades. Delayed UPE often decays hyperbolically; yet, it is not uncommon to have delayed UPE that reveals first-order kinetic patterns characterized by single-exponential, double exponential, or multi-exponential changes. Some delayed UPEs also presented transient patterns that are characteristic of second-order responses. A soliton-based photon-storage model has addressed the hyperbolic decaying pattern of delayed UPE; however, there are questions outstanding regarding modeling other non-hyperbolic kinetics as well as the large range of temporal scales of delayed UPE that can vary from 8.5 microseconds to many hours. This work proposes an alternative, phenomenological model-framework for interpreting the various kinetic patterns of delayed UPE following stress. The delayed UPE is considered to be governed by two sequential phases: a stress-transfer phase that transforms the external stress to photo-genesis for emitting photons, and a photon-diffusion phase that transmits the photons emitted by the photo-genesis to the surface of organism for being detected as delayed UPE. Time-resolved photon diffusion analysis reveals that any delayed UPE in organism with a delay time >100ns cannot be addressed by the inherent temporal spread that realistic tissue scattering will cause. A slow stress-transfer phase is thus required to explain the delay time-scales of delayed UPE at a minimum of 8.5 µs as reported experimentally. The stress-transfer phase is hypothesized to carry the following types of responses: single or multiple 1st-order low-pass, single 2nd-order low-pass with various damping factors, and single 2nd-order band-pass with various damping factors. A single 1st–order low-pass response with a time-varying kinetic rate is also analyzed. The responses of these modeled pathways to bolus and step inputs demonstrate that a kinetic pattern other than the exact single-exponential one may have multiple causes.

Supplementary and Associated Material

Subject Areas

delayed ultraweak photon emission; light propagation in tissues; stress transfer

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.