Preprint
Article

Eigen Artificial Neural Networks

This version is not peer-reviewed.

Submitted:

14 September 2019

Posted:

16 September 2019

You are already at the latest version

Abstract
This work has its origin in intuitive physical and statistical considerations. The problem of optimizing an artificial neural network is treated as a physical system, composed of a conservative vector force field. The derived scalar potential is a measure of the potential energy of the network, a function of the distance between predictions and targets. Starting from some analogies with wave mechanics, the description of the sys-tem is justified with an eigenvalue equation that is a variant of the Schr˜odinger equation, in which the potential is defined by the mutual information between inputs and targets. The weights and parameters of the network, as well as those of the state function, are varied so as to minimize energy, using an equivalent of the variational theorem of wave mechanics. The minimum energy thus obtained implies the principle of minimum mutual information (MinMI). We also propose a definition of the potential work produced by the force field to bring a network from an arbitrary probability distribution to the potential-constrained system, which allows to establish a measure of the complexity of the system. At the end of the discussion we expose a recursive procedure that allows to refine the state function and bypass some initial assumptions, as well as a discussion of some topics in quantum mechanics applied to the formalism, such as the uncertainty principle and the temporal evolution of the system. Results demonstrate how the minimization of energy effectively leads to a decrease in the average error between network predictions and targets.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

189

Views

502

Comments

1

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated