Preprint
Article

This version is not peer-reviewed.

Double Refinement Network for Room Layout Estimation

Submitted:

20 May 2019

Posted:

22 May 2019

You are already at the latest version

Abstract
Layout estimation is a challenge of segmenting a cluttered room image into floor, walls and ceiling. We applied Double refinement network proved to be efficient in the depth estimation to generate heat maps for room key points and edges. Our method is the first not using encoder-decoder architecture for the room layout estimation. ResNet50 was utilized as a backbone for the network instead of VGG16 commonly used for the task, allowing the network to be more compact and faster. We designed a special layout score function and layout ranking algorithm for key points and edges output. Our method achieved the lowest pixel and corner errors on the LSUN data set. The input image resolution is 224*224.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated