Preprint
Article

Assessment of Cognitive Aging Using an SSVEP-Based Brain Computer Interface System

This version is not peer-reviewed.

Submitted:

10 May 2019

Posted:

13 May 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Cognitive deterioration caused by illness or aging often occurs before symptoms arise, and their timely diagnosis is crucial to reducing its medical, personal, and societal impacts. Brain-Computer Interfaces (BCIs) stimulate and analyze key cerebral rhythms, enabling reliable cognitive assessment that can accelerate diagnosis. The BCI system presented analyzes Steady-State Visually Evoked Potentials (SSVEPs) elicited in subjects of varying age to detect cognitive aging, predict its magnitude, and identify its relationship with SSVEP features (band power and frequency detection accuracy), which were hypothesized to indicate cognitive decline due to aging. The BCI system was tested with subjects of varying age to assess its ability to detect aging-induced cognitive deterioration. Rectangular stimuli flickering at theta, alpha, and beta frequencies were presented to subjects, and frontal and occipital EEG responses were recorded. These were processed to calculate detection accuracy for each subject and calculate SSVEP band power. A neural network was trained using the features to predict cognitive age. The results showed potential cognitive deterioration through age-related variations in SSVEP features. Frequency detection accuracy declined after age group 20–40 and band power, throughout all age groups. SSVEPs generated at theta and alpha frequencies, especially 7.5 Hz, were the best indicators of cognitive deterioration. Here, frequency detection accuracy consistently declined after age group 20-40 from an average of 96.64% to 69.23%. The presented system can be used as an effective diagnosis tool for age related cognitive decline.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

202

Views

236

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated