Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Functional Characterization of Outer Membrane Proteins (OMPs) in Xenorhabdus nematophila and Photorhabdus luminescens through Insect Immune Defense Reactions

Version 1 : Received: 12 April 2019 / Approved: 15 April 2019 / Online: 15 April 2019 (11:45:11 CEST)

A peer-reviewed article of this Preprint also exists.

Darsouei, R.; Karimi, J.; Dunphy, G.B. Functional Characterization of Outer Membrane Proteins (OMPs) in Xenorhabdus nematophila and Photorhabdus luminescens through Insect Immune Defense Reactions. Insects 2019, 10, 352. Darsouei, R.; Karimi, J.; Dunphy, G.B. Functional Characterization of Outer Membrane Proteins (OMPs) in Xenorhabdus nematophila and Photorhabdus luminescens through Insect Immune Defense Reactions. Insects 2019, 10, 352.

Abstract

Xenorhabdus nematophila and Photorhabdus luminescens are entomopathogenic symbionts that produce several toxic proteins that can interfere with the immune system of insects. Here, we showed that outer membrane proteins (OMPs) could be involved as virulence factors during bacterial symbiont pathogenesis. Purified OMPs from bacterial culture were injected fifth instar larvae of Spodoptera exigua Hübner. Larvae were surveyed for fluctuations in total haemocyte counts (THC), granulocyte percentage (cellular defence), protease, phospholipase A2 (PLA2), and phenoloxidase (PO) activities (humoral defence) at specific time intervals. Changes in the expression of the three antimicrobial peptides (AMPs), cecropin, attacin, and spodoptericin, were also measured. Larvae treated with both types of OMPs had more haemocytes than did the negative controls. OMPs of X. nematophila caused more haemocyte destruction than did the OMPs of P. luminescens. The OMPs of both bacterial species initially activated insect defensive enzymes post-injection, their activating fluctuated in different ways. Attacin, cecropin and spodoptericin were up-regulated by OMP injections more than in normal larvae. The expression of these three AMPs was maximal at four hpi with P. luminescens OMPs treatment. Expression of the three AMPs in X. nematophila treatment was irregular and lower than in the P. luminescens OMPs treatment. These findings provide insights into the role of OMPs of entomopathogenic nematode bacterial symbionts in countering the physiological defenses of insects.

Keywords

antimicrobial peptides; cellular defense; insect pathology; phenoloxidae; phospholipase A2; protease

Subject

Biology and Life Sciences, Insect Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.