Article
Version 1
Preserved in Portico This version is not peer-reviewed
An Odd-Power Identity Involving Discrete Convolution
Version 1
: Received: 9 April 2019 / Approved: 10 April 2019 / Online: 10 April 2019 (10:27:59 CEST)
How to cite: Petro, K. An Odd-Power Identity Involving Discrete Convolution. Preprints 2019, 2019040126. https://doi.org/10.20944/preprints201904.0126.v1 Petro, K. An Odd-Power Identity Involving Discrete Convolution. Preprints 2019, 2019040126. https://doi.org/10.20944/preprints201904.0126.v1
Abstract
Let be a power function $f_{r,M}(s)$ defined for every $s$ within the finite set $M$ as follows $$f_{r,M}(s)= \begin{cases} s^r, \ &s\in M,\\ 0, \ &\mathrm{otherwise}. \end{cases} $$ Let a discrete convolution of $f_{r,M}(s)$ be denoted as follows $\mathrm{Conv}_{r,M}[n]=(f_{r,M}*f_{r,M})[n]$. Let a real coefficients $A_{m,j}$ be given by the following recurrence $$ A_{m,j} = \begin{cases} 0, & \mathrm{if } \ j<0 \ \mathrm{or } \ j>m, \\ (2j+1)\binom{2j}{j} \sum_{d=2j+1}^{m} A_{m,d} \binom{d}{2j+1} \frac{(-1)^{d-1}}{d-j} B_{2d-2j}, & \mathrm{if } \ 0 \leq j < m, \\ (2j+1)\binom{2j}{j}, & \mathrm{if } \ j=m. \end{cases} $$ In this paper we show that for every $n>0$ the following odd-power identities involving coefficients $A_{m,j}$ and convolution transform $\mathrm{Conv}_{r,M}[n]$ hold $$ \begin{split} n^{2m+1}+1&=\sum_{r=0}^{m}A_{m,r}\mathrm{Conv}_{r,\mathbb{N}}[n],\\ n^{2m+1}-1&=\sum_{r=0}^{m}A_{m,r}\mathrm{Conv}_{r,\mathbb{Z}_{>0}}[n],\\ n^{2m+1}&=\sum_{r=0}^{m}A_{m,r}\sum_{k=1}^{n} k^r(n-k)^r\\ &=\sum_{r=0}^{m}A_{m,r}\sum_{k=0}^{n-1} k^r(n-k)^r. \end{split} $$
Keywords
power identities; polynomials; convolution; convolution power; integral transforms; power function; binomial theorem; multinomial theorem; Faulhaber's formula; Bernoulli numbers; Worpitzky identity; Stirling numbers; falling factorial
Subject
Computer Science and Mathematics, Discrete Mathematics and Combinatorics
Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (0)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.
Leave a public commentSend a private comment to the author(s)
* All users must log in before leaving a comment