Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Varying Physical Constants, Astrometric Anomalies, Redshift and Hubble Units

Version 1 : Received: 4 April 2019 / Approved: 5 April 2019 / Online: 5 April 2019 (12:07:58 CEST)

A peer-reviewed article of this Preprint also exists.

Gupta, R.P. Varying Physical Constants, Astrometric Anomalies, Redshift and Hubble Units. Galaxies 2019, 7, 55. Gupta, R.P. Varying Physical Constants, Astrometric Anomalies, Redshift and Hubble Units. Galaxies 2019, 7, 55.

Abstract

We have developed a cosmological model by allowing the speed of light c, gravitational constant G and cosmological constant Λ in the Einstein filed equation to vary in time, and solved them for Robertson-Walker metric. Assuming the universe is flat and matter dominant at present, we obtain a simple model that can fit the supernovae 1a data with a single parameter almost as well as the standard ΛCDM model with two parameters, and has the predictive capability superior to the latter. The model, together with the null results for the variation of G from the analysis of lunar laser ranging data determines that at the current time G and c both increase as dG/dt = 5.4GH0 and dc/dt = 1.8cH0 with H0 as the Hubble constant, and Λ decreases as dΛ/dt = -1.2ΛH0. This variation of G and c is all what is needed to account for the Pioneer anomaly, the anomalous secular increase of the Moon eccentricity, and the anomalous secular increase of the astronomical unit. We also show that the Planck’s constant ħ increases as dħ/dt = 1.8ħH0 and the ratio D of any Hubble unit to the corresponding Planck units increases as dD/dt = 1.5DH0. We have shown that it is essential to consider the variation of all the physical constants that may be involved directly or indirectly in a measurement rather than only the one whose variation is being considered.

Keywords

Astroparticle physics; astrometric anomaly; supernovae redshift; cosmology theory; variable physical constants; VSL

Subject

Physical Sciences, Astronomy and Astrophysics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.