Preprint
Article

This version is not peer-reviewed.

Intraday Load Forecasts with Uncertainty

A peer-reviewed article of this preprint also exists.

Submitted:

03 April 2019

Posted:

04 April 2019

You are already at the latest version

Abstract
We provide a comprehensive framework for forecasting five minute load using Gaussian processes with a positive definite kernel specifically designed for load forecasts. Gaussian processes are probabilistic, enabling us to draw samples from a posterior distribution and provide rigorous uncertainty estimates to complement the point forecast, an important benefit for forecast consumers. As part of the modeling process, we discuss various methods for dimension reduction and explore their use in effectively incorporating weather data to the load forecast. We provide guidance for every step of the modeling process, from model construction through optimization and model combination. We provide results on data from the PJMISO for various periods in 2018. The process is transparent, mathematically motivated, and reproducible. The resulting model provides a probability density of five-minute forecasts for 24 hours.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated