Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Monitoring Soil Moisture Drought over Northern High Latitudes from Space

Version 1 : Received: 30 March 2019 / Approved: 1 April 2019 / Online: 1 April 2019 (10:28:40 CEST)

A peer-reviewed article of this Preprint also exists.

Blyverket, J.; Hamer, P.D.; Schneider, P.; Albergel, C.; Lahoz, W.A. Monitoring Soil Moisture Drought over Northern High Latitudes from Space. Remote Sens. 2019, 11, 1200. Blyverket, J.; Hamer, P.D.; Schneider, P.; Albergel, C.; Lahoz, W.A. Monitoring Soil Moisture Drought over Northern High Latitudes from Space. Remote Sens. 2019, 11, 1200.

Abstract

Mapping drought from space using, e.g., surface soil moisture (SSM), has become viable in the last decade. However, state of the art SSM retrieval products suffer from very poor coverage over northern latitudes. In this study, we propose an innovative drought indicator with a wider spatial and temporal coverage than that obtained from satellite SSM retrievals. We evaluate passive microwave brightness temperature observations from the Soil Moisture and Ocean Salinity (SMOS) satellite as a surrogate drought metric, and introduce a Standardized Brightness Temperature Index (STBI). The STBI is validated against drought indices from a land surface data assimilation system (LDAS-Monde), two satellite dervied SSM indices and a standardized precipitation index. Finally, we evaluate the STBI against the before mentioned drought indices in a case study of the 2018 Nordic drought. The STBI is found to be superior to the drought index created from satellite derived SSM in both spatial and temporal coverage over the Nordic region. Our results indicate that when compared to drought indices from precipitation data and a land data assimilation system, the STBI is able to capture the 2018 drought onset, severity and extent. Thus, the STBI index could provide additional information for drought monitoring in regions where the SSM retrieval problem is difficult.

Keywords

SMOS; drought index; summer 2018 drought

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.