Preprint
Article

Application of Machine Learning Techniques to Predict Mechanical Properties for Polyamide 2200 (PA12) in Additive Manufacturing

This version is not peer-reviewed.

Submitted:

28 February 2019

Posted:

05 March 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Additive manufacturing (AM) is an attractive technology for manufacturing industry due to flexibility in design and functionality, but inconsistency in quality is one of the major limitations that does not allow utilizing this technology for production of end-use parts. Prediction of mechanical properties can be one of the possible ways to improve the repeatability of the results. The part placement, part orientation, and STL model properties (number of mesh triangles, surface, and volume) are used to predict tensile modulus, nominal stress and elongation at break for polyamide 2200 (also known as PA12). EOS P395 polymer powder bed fusion system was used to fabricate 217 specimens in two identical builds (434 specimens in total). Prediction is performed for XYZ, XZY, ZYX, and Angle orientations separately, and all orientations together. The different non-linear models based on machine learning methods have higher prediction accuracy compared with linear regression models. Linear regression models have prediction accuracy higher than 80% only for Tensile Modulus and Elongation at break in Angle orientation. Since orientation-based modeling has low prediction accuracy due to a small number of data points and lack of information about material properties, these models need to be improved in the future based on additional experimental work.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

367

Views

367

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated