Preprint Article Version 1 This version is not peer-reviewed

Model Based on an Effective Material Removal Rate to Evaluate the Specific Energy Consumption in Grinding

Version 1 : Received: 21 February 2019 / Approved: 25 February 2019 / Online: 25 February 2019 (10:01:43 CET)

A peer-reviewed article of this Preprint also exists.

Nápoles Alberro, A.; González Rojas, H.A.; Sánchez Egea, A.J.; Hameed, S.; Peña Aguilar, R.M. Model Based on an Effective Material-Removal Rate to Evaluate Specific Energy Consumption in Grinding. Materials 2019, 12, 939. Nápoles Alberro, A.; González Rojas, H.A.; Sánchez Egea, A.J.; Hameed, S.; Peña Aguilar, R.M. Model Based on an Effective Material-Removal Rate to Evaluate Specific Energy Consumption in Grinding. Materials 2019, 12, 939.

Journal reference: Materials 2019, 12, 939
DOI: 10.3390/ma12060939

Abstract

The energy efficiency of grinding depends on the appropriate selection of cutting conditions, grinding wheel and workpiece material. Additionally, the estimation of specific energy consumption is a good indicator to control the energy consumed during the grinding process. Consequently, this study develops a model of material removal rate to estimate the specific energy consumption based on the measurement of active power consumed in a plane surface grinding of C45K with different thermal treatments and AISI 304. This model identifies and evaluates the power dissipated by sliding, ploughing and chip formation in a industrial-scale grinding process. Furthermore, the instantaneous positions of the abrasive grains during cutting are described to study the material removal rate. The estimation of specific chip formation energy is similar to that described by other authors in laboratory scale, which allows to validate the model and experiments. Finally, the results show that the energy consumed by sliding is the main phenomenon of energy dissipation in industrial-scale grinding process, where it is denoted that sliding energy by volume unity decreases as the depth of cut and speed of workpiece increase.

Subject Areas

power consumption; material removal rate; specific energy consumption; grain density; modeling

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.