Preprint
Article

The Impact of Lubricant Film Thickness and Ball Bearings Failures

This version is not peer-reviewed.

Submitted:

14 February 2019

Posted:

18 February 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
An effort was made to find a relationship between the ratio of average asperities height and lubricant thickness at the point of contact of rolling element ball bearings, and empirical equations to predict the life for bearings under constant motion. Two independent failure mechanisms were considered, fatigue failure and lubricant failure resulting in seizing of the roller bearing. A theoretical formula for both of these methods was established for the combined probability of failure using both of these failure mechanisms. Fatigue failure was modeled with the empirical equations of Lundberg and Palmgren and standardized in DIN/ISO281. The seizure failure, which this effort sought to investigate, was predicted using Greenwood and Williamson's theories on surface roughness and asperities during lubricated contact. These two mechanisms were combined, and compared to predicted cycle lives of commercial roller bearing, and a clear correlation was demonstrated. This effort demonstrated that the Greenwood-Williams theories on the relative height of asperities versus lubricant film thickness can be used to predict the probability of a lubricant failure resulting in a roller bearing seizing during use.
Keywords: 
lubrication; ball bearings; roller bearings; failures; L10; film thickness
Subject: 
Chemistry and Materials Science  -   Surfaces, Coatings and Films
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

457

Views

346

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated